
FUNCTIONAL PROGRAMMING INCEPTION

Alexandru Nedelcu

Software Developer @ eloquentix.com 
@alexelcu / alexn.org

http://eloquentix.com
https://twitter.com/alexelcu
http://alexn.org

FUNCTIONAL PROGRAMMING INCEPTION

WHAT IS FUNCTIONAL PROGRAMMING?

FUNCTIONAL PROGRAMMING INCEPTION

WHAT IS FUNCTIONAL PROGRAMMING?

A: Programming with Mathematical Functions

FUNCTIONAL PROGRAMMING INCEPTION

PROPERTIES OF FP

▸FP <=> Programming with Values

▸Referential Transparency

▸Composability, Reason

ITERATOR
CASE STUDY ON THE WORLD MOST

FAMOUS OOP ABSTRACTION

ITERATOR

HOW DID ITERATOR HAPPEN?

ITERATOR

HOW DID ITERATOR HAPPEN?

ITERATOR

HOW DID ITERATOR HAPPEN?

ITERATOR

HOW DID ITERATOR HAPPEN?

ITERATOR

HOW DID ITERATOR HAPPEN?

ITERATOR

PROBLEMS ?

ITERATOR

PROBLEMS ?

▸Synchronous Only

▸blocks threads for async stuff

▸no way around it, it’s in the signature

ITERATOR

PROBLEMS ?
▸ Synchronous Only

▸No Backed-in Resource Managed

ITERATOR

PROBLEMS ?
▸ Synchronous Only

▸ No Backed-in Resource Managed

▸Minefield for Stack Overflows

FP DESIGN
HOW TO

ARCHITECTURE IS FROZEN
MUSIC

Johann Wolfgang Von Goethe

FP DESIGN

DATA STRUCTURES ARE
FROZEN ALGORITHMS

Jon Bentley

FP DESIGN

FP DESIGN

KEY INSIGHTS

1. Freeze Algorithms into Data-Structures 
(Immutable)

FP DESIGN

KEY INSIGHTS
1. Freeze Algorithms into Data-Structures

2. Think State Machines 
(most of the time)

FP DESIGN

KEY INSIGHTS
1. Freeze Algorithms into Data-Structures

2. Think State Machines

3. Be Lazy  
(Strict Values => Functions ;-))

FP DESIGN

KEY INSIGHTS
1. Freeze Algorithms into Data-Structures

2. Think State Machines

3. Be Lazy

4. Evaluate Effects w/ Stack-safe Monads  
(e.g. IO, Task, Free)

Finite State Machine Cat

FP DESIGN

EXAMPLE: LINKED LISTS

FP DESIGN

EXAMPLE: LINKED LISTS

FP DESIGN

EXAMPLE: LINKED LISTS

ITERANT
A PURELY FUNCTIONAL ITERATOR

ITERANT

LAZY EVALUATION

λ-calculus: using anonymous functions because of privacy concerns

ITERANT

LAZY EVALUATION

λ-calculus: using anonymous functions because of privacy concerns

ITERANT

USAGE

ITERANT

RESOURCE MANAGEMENT

ITERANT

USAGE

Not pure yet, not referentially transparent

ITERANT

DEFERRING

ITERANT

USAGE

ITERANT

USAGE

ITERANT

USAGE

ASYNCHRONY
CONCURRENCY, NON-DETERMINISM

ASYNCHRONY

QUICK INTRO

ASYNCHRONY

QUICK INTRO

ASYNCHRONY

QUICK INTRO

ASYNCHRONY

CAN WE DO THIS ?

ASYNCHRONY

EVALUATION IN SCALA

Eager Lazy

A () => A

ASYNCHRONY

EVALUATION IN SCALA

Eager Lazy

Synchronous A () => A

Asynchronous (A => Unit) => Unit () => (A => Unit) => Unit

ASYNCHRONY

EVALUATION IN SCALA

Eager Lazy

Synchronous A () => A

Function0[A]

Asynchronous (A => Unit) => Unit () => (A => Unit) => Unit

Future[A] Task[A]

“A FUTURE REPRESENTS A
VALUE, DETACHED FROM TIME”

Viktor Klang

MONIX TASK

ASYNCHRONY

GOING LAZY (AGAIN)

ASYNCHRONY

ASYNCHRONY

MONIX TASK

▸ High-performance

▸ Lazy, possibly asynchronous behaviour

▸ Allows for cancelling of a running computation

▸ https://monix.io/docs/2x/eval/task.html

https://monix.io/docs/2x/eval/task.html

ASYNCHRONY

GOING LAZY (AGAIN)

HIGHER-KINDED  
POLYMORPHISM

Bring Your Own Booze

HIGHER-KINDED POLYMORPHISM

CAN WE DO THIS ?

HIGHER-KINDED POLYMORPHISM

CAN WE DO THIS ?

HIGHER-KINDED POLYMORPHISM

GENERICS OF A HIGHER KIND

HIGHER-KINDED POLYMORPHISM

GENERICS OF A HIGHER KIND

HIGHER-KINDED POLYMORPHISM

GENERICS OF A HIGHER KIND

HIGHER-KINDED POLYMORPHISM

OOP VS PARAMETRIC POLYMORPHISM

▸…

HIGHER-KINDED POLYMORPHISM

OOP VS PARAMETRIC POLYMORPHISM

▸OOP is about Information Hiding 
(in types too)

▸OOP handles Heterogeneity

HIGHER-KINDED POLYMORPHISM

OOP VS PARAMETRIC POLYMORPHISM
▸ OOP is about Information Hiding 

(in types too)

▸ OOP handles Heterogeneity

▸Parametric Polymorphism is
compile-time

▸Fundamentally changes behaviour
based on plugged-in types

HIGHER-KINDED POLYMORPHISM

OOP VS PARAMETRIC POLYMORPHISM

▸ArrayIterator vs ListIterator

▸Iterant[Task] vs Iterant[Eval]

HIGHER-KINDED POLYMORPHISM

OOP VS PARAMETRIC POLYMORPHISM
▸ ArrayIterator vs ListIterator

▸ Iterant[Task, _] vs Iterant[Eval, _]

▸One is hiding implementation details

▸The other is about composition

HIGHER-KINDED POLYMORPHISM

PROBLEMS

▸Pushes compiler to its limits

HIGHER-KINDED POLYMORPHISM

PROBLEMS
▸ Pushes compiler to its limits

▸Unfamiliarity for users

HIGHER-KINDED POLYMORPHISM

PROBLEMS
▸ Pushes compiler to its limits

▸ Unfamiliarity for users

▸Not all needed type-classes are
available, design can be frustrating  
https://github.com/typelevel/cats/pull/1552 
(39 comments and counting)  

https://github.com/typelevel/cats/pull/1552

HIGHER-KINDED POLYMORPHISM

UPSIDE

HIGHER-KINDED POLYMORPHISM

LAWS

HIGHER-KINDED POLYMORPHISM

LAWS
▸ Typelevel Cats

▸ Typelevel Discipline

▸ ScalaCheck

http://typelevel.org/cats/
https://github.com/typelevel/discipline
https://www.scalacheck.org/

FUNCTIONAL PROGRAMMING

PERFORMANCE PROBLEMS

▸Linked Lists are everywhere in FP

▸Linked Lists are terrible

▸Async or Lazy Boundaries are terrible

FUNCTIONAL PROGRAMMING

PERFORMANCE SOLUTIONS

▸Linked Lists are everywhere in FP

▸Linked Lists are terrible

▸Async or Lazy Boundaries are terrible

▸Find Ways to work with Arrays and

▸… to avoid lazy/async boundaries

FUNCTIONAL PROGRAMMING

PERFORMANCE SOLUTIONS

Efficient  
head/tail  

decomposition  
needed ;-)

FUNCTIONAL PROGRAMMING

OTHER PROBLEMS

▸Recursion is terrible

▸Space leaks are hard to fix

FUNCTIONAL PROGRAMMING

OTHER PROBLEMS

▸Recursion is terrible

▸Space leaks are hard to fix

▸Solvable with pain and YourKit

TAKEAWAYS

FUNCTIONAL PROGRAMMING INCEPTION

TAKEAWAYS

▸ Freeze Algorithms into Immutable Data-Structures

▸ Describe State Machines

▸ Be lazy, suspend side-effects with Task/Free/IO

▸ Be lawful, use ScalaCheck/QuickCheck

▸ Performance matters (for libraries)

FUNCTIONAL PROGRAMMING INCEPTION

TAKEAWAYS

▸ Libraries:  
Monix, Cats, ScalaCheck

▸Generic Iterant implementation: 
https://github.com/monix/monix/pull/280

▸ Simplified Task-based implementation: 
https://github.com/monix/monix/pull/331

https://monix.io
http://typelevel.org/cats/
https://www.scalacheck.org/
https://github.com/monix/monix/pull/280
https://github.com/monix/monix/pull/331

QUESTIONS?

