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WHAT IS FUNCTIONAL PROGRAMMING?

A: Programming with Mathematical Functions



FUNCTIONAL PROGRAMMING INCEPTION

PROPERTIES OF FP

▸FP <=> Programming with Values 

▸Referential Transparency  

▸Composability, Reason



ITERATOR
CASE STUDY ON THE WORLD MOST 

FAMOUS OOP ABSTRACTION
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▸Synchronous Only 

▸blocks threads for async stuff 

▸no way around it, it’s in the signature
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ITERATOR

PROBLEMS ?
▸ Synchronous Only 

▸ No Backed-in Resource Managed 

▸Minefield for Stack Overflows



FP DESIGN
HOW TO



ARCHITECTURE IS FROZEN 
MUSIC

Johann Wolfgang Von Goethe

FP DESIGN



DATA STRUCTURES ARE 
FROZEN ALGORITHMS

Jon Bentley

FP DESIGN
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FP DESIGN

KEY INSIGHTS
1. Freeze Algorithms into Data-Structures 

2. Think State Machines 

3. Be Lazy 

4. Evaluate Effects w/ Stack-safe Monads  
(e.g. IO, Task, Free)



Finite State Machine Cat
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ITERANT
A PURELY FUNCTIONAL ITERATOR



ITERANT
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λ-calculus: using anonymous functions because of privacy concerns
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LAZY EVALUATION

λ-calculus: using anonymous functions because of privacy concerns



ITERANT
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RESOURCE MANAGEMENT



ITERANT

USAGE

Not pure yet, not referentially transparent
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DEFERRING
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USAGE



ITERANT

USAGE





ASYNCHRONY
CONCURRENCY, NON-DETERMINISM
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ASYNCHRONY

EVALUATION IN SCALA

Eager Lazy

Synchronous A () => A

Function0[A]

Asynchronous (A => Unit) => Unit () => (A => Unit) => Unit

Future[A] Task[A]



“A FUTURE REPRESENTS A 
VALUE, DETACHED FROM TIME”

Viktor Klang

MONIX TASK
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ASYNCHRONY

MONIX TASK

▸ High-performance 

▸ Lazy, possibly asynchronous behaviour 

▸ Allows for cancelling of a running computation 

▸ https://monix.io/docs/2x/eval/task.html

https://monix.io/docs/2x/eval/task.html


ASYNCHRONY

GOING LAZY (AGAIN)



HIGHER-KINDED  
POLYMORPHISM

Bring Your Own Booze
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OOP VS PARAMETRIC POLYMORPHISM
▸ OOP is about Information Hiding 

(in types too) 

▸ OOP handles Heterogeneity 

▸Parametric Polymorphism is 
compile-time 

▸Fundamentally changes behaviour 
based on plugged-in types
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OOP VS PARAMETRIC POLYMORPHISM

▸ArrayIterator vs ListIterator 

▸Iterant[Task] vs Iterant[Eval]
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OOP VS PARAMETRIC POLYMORPHISM
▸ ArrayIterator vs ListIterator 

▸ Iterant[Task, _] vs Iterant[Eval, _] 

▸One is hiding implementation details 

▸The other is about composition
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HIGHER-KINDED POLYMORPHISM

PROBLEMS
▸ Pushes compiler to its limits 

▸ Unfamiliarity for users 

▸Not all needed type-classes are 
available, design can be frustrating  
https://github.com/typelevel/cats/pull/1552 
(39 comments and counting)  

https://github.com/typelevel/cats/pull/1552


HIGHER-KINDED POLYMORPHISM

UPSIDE
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HIGHER-KINDED POLYMORPHISM

LAWS
▸ Typelevel Cats 

▸ Typelevel Discipline 

▸ ScalaCheck

http://typelevel.org/cats/
https://github.com/typelevel/discipline
https://www.scalacheck.org/
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▸Async or Lazy Boundaries are terrible



FUNCTIONAL PROGRAMMING

PERFORMANCE SOLUTIONS

▸Linked Lists are everywhere in FP 

▸Linked Lists are terrible 

▸Async or Lazy Boundaries are terrible 

▸Find Ways to work with Arrays and 

▸… to avoid lazy/async boundaries



FUNCTIONAL PROGRAMMING

PERFORMANCE SOLUTIONS

Efficient  
head/tail  

decomposition  
needed ;-)
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▸Space leaks are hard to fix
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OTHER PROBLEMS

▸Recursion is terrible 

▸Space leaks are hard to fix 

▸Solvable with pain and YourKit
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TAKEAWAYS

▸ Freeze Algorithms into Immutable Data-Structures 

▸ Describe State Machines 

▸ Be lazy, suspend side-effects with Task/Free/IO 

▸ Be lawful, use ScalaCheck/QuickCheck 

▸ Performance matters (for libraries)
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TAKEAWAYS

▸ Libraries:  
Monix, Cats, ScalaCheck 

▸Generic Iterant implementation: 
https://github.com/monix/monix/pull/280 

▸ Simplified Task-based implementation: 
https://github.com/monix/monix/pull/331

https://monix.io
http://typelevel.org/cats/
https://www.scalacheck.org/
https://github.com/monix/monix/pull/280
https://github.com/monix/monix/pull/331


QUESTIONS?


